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The effect of the thermal motions of the atoms on interatomic distances is treated in terms of lattice 
dynamics. It is not only shown how the anisotropic vibration tensors of the atoms can be derived from 
the dynamical matrices of the crystal but also how mean binary-product coupling tensors are obtained. 
Each of these tensors expresses the coupling of the motions of two atoms in the unit cell as an average 
over time and lattice and thus is suitable for formulating the bond-length correction. Hence the discus- 
sion centres around the coupling tensors. The coupling tensors cannot be determined by experiment; 
but in order to calculate them and the bond-length correction, one is forced to conceive dynamical 
models of motion for the atoms in the unit cell. The corrections for the known models of uncorrelated 
motion, rigid-body motion and riding motion are rederived by using the coupling tensors. 

1. Introduction 

The effect of the thermal motions of the atoms on inter- 
atomic distances has been discussed by Cruickshank 
(1956, 1961), Busing & Levy (1957, 1964), Schomaker 
& Trueblood (1968), and Johnson (1970). Structure re- 
finement with X-ray and/or neutron data provides the 
mean positions of the atoms in the unit cell. The dis- 
tance between the mean positions of the atoms is gen- 
erally considered as a good approximation of the 'true' 
distance between the atoms. It is, however, more exact 
to define the 'true' distance to be the time and lattice 
average of all instantaneous distances, whereby this 
distance is usually larger because the atoms usually do 
not vibrate in phase in the planes perpendicular to the 
distance vector. Diffraction methods applied to crystals 
do not provide any phase relationships for the motions 
of neighbouring atoms. Hence one is forced to con- 
ceive dynamical models of motion for which the phase 
relationships are defined. These allow one to calculate 
the bond-length correction. The models, which have 
been used in the past, are the models of rigid-body mo- 
tion, riding motion, and uncorrelated motion. 

Two methods have been applied to derive the bond- 
length correction from a given dynamical model. 
Cruickshank (1956, 1961) investigated how rigid-body 
motion effects the electron-density distribution of the 

atoms in question. The calculation of the correction is 
based on determining the correct positions of the elec- 
tron-density maxima which represent the atoms. As a 
new concept Busing & Levy (1957, 1964) introduced 
the joint distribution of the atoms in question and thus 
defined the 'true' distance as the average over the joint 
distribution of the two atoms. The actual calculation of 
the correction is thus based on the solution of convo- 
lution integrals. The concept of the joint distribution 
also plays the prominent part in Johnson's (1970) re- 
view. 

Our approach to determining the correction will be 
derived from a lattice-dynamical investigation of the 
anisotropic vibration tensors. A central concept in 
describing the dynamics of a crystal is the dynamical 
matrices. In a preceding paper (Scheringer, 1972) we 
showed how the anisotropic vibration tensors can be 
expressed by way of the dynamical matrices of the 
crystal. In a similar manner one can also obtain mean 
binary-product coupling tensors. Each of these tensors 
expresses the coupling of the motions of two atoms in 
the unit cell as an average over time and lattice and 
thus contains the respective phase relationships. Hence 
the coupling tensors are suitable for formulating the 
bond-length correction, and in this paper our discus- 
sion will centre around them. 

Unfortunately, the coupling tensors cannot be deter- 
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mined by experiment. Hence in order to calculate them 
and the bond-length correction, we are also forced to 
conceive dynamical models of motion for the atoms in 
the unit cell. 

In this paper we first give the definition and discuss 
the meaning of the coupling tensors. Then we express 
the general equations for the bond-length correction 
in terms of the coupling tensors. Finally, we show how 
the  correction can be derived concisely for the known 
dynamical models of the rigid-body motion, riding mo- 
tion, and uncorrelated motion by using the coupling 
tensors. 

2. The coupling tensors 

In a preceding paper [Scheringer, 1972 equations (10) 
and (15)] we showed that the coupling tensors are the 
3 x 3 off-diagonal blocks of a 3n × 3n mean-square am- 
plitude matrix U which is uniquely determined by the 
dynamical matrices of the crystal, n is the number of 
atoms in the unit cell. If we order the atoms r and s in 
sequence the 6 × 6 diagonal block G of the matrix U, 
which refers to the atoms r and s, has the form 

Ur i Urq • 
G= (Us, lU, 1 (2.1) 

Formally the matrices Urs represent components of 
second rank tensors since the elements of Urs transform 
like the components of the tensors Ur when transform- 
ing the base vectors of the crystal. Since G is symmetric 
we have Usr-- Urs.r (The superscript T denotes the 
transposed matrix.) In general, the coupling tensors are 
not symmetric, whereas Ur=U,  r. The explicit lattice- 
dynamical expression for the coupling tensors can be 
derived from the dynamical matrices of the crystal as 
follows: The calculation, which has been performed in 
a preceding paper (Scheringer, 1972), has to be reversed 
beginning from equation (15) and ending at equation 
(4). Then one obtains 

1 E'(qj) 

× [e,(rlqj)e~(slqj) + e*~(rlqj)e,,(slqj)]. (2.2) 

q denotes the wave vector, and j =  1 . . .  3n. mr and ms 
are the masses of the atoms r and s./7(q j)  is the energy 
of mode q j  in thermal equilibrium, coj(q) the circular 
frequency of mode q j, el(rlqj) the ith component of 
polarization of mode q j, which specifies the motions of 
the atom r in this mode in the direction i, and N is the 
number of cells in the crystal. The components U~ 
usually cannot be calculated from equation (2.2) since 
the quantities in the sum over all modes q j, or the dy- 
namical matrices are usually unknown. 

Let all tensors be referred to an orthonormal metric. 
The components are then in A 2. Let Ax~ be the instan- 
taneous displacement of the atom r from its mean posi- 
tion in the direction i, then the components of the ten- 
sors Urs represent the time and lattice average 

U[~ = (Ax,tA~); i , k= 1,2,3. (2.3) 

Thus the coupling tensors describe the extent of in- 
phase or out-of-phase motions of the atoms r and s, 
as the average over time and lattice. 

3. The equations for the bond-length correction 

Busing & Levy (1964), cf. also Johnson (1970), showed 
that the time and lattice average of a bond-length in the 
quadratic approximation, is given by 

4o~,=d+(rZ-zZ)/2d.  (3.1) 

The subscript 'corr' indicates that we consider this 
bond-length as the corrected one. d is the distance be- 
tween the mean positions of the atoms. ~ is the sum of 
the relative mean-square displacements of the atoms r 
and s along the three axes of the Cartesian reference 
system, and z 2 is the relative mean-square displacement 
of the atoms r and s in the direction of the bond vector, 
d. Thus r Z - z  2 is twice the relative mean-square dis- 
placement in the plane perpendicular to the bond vec- 
tor. In the following we calculate r 2 -  z 2 in terms of the 
vibration tensors U~, Us, and the coupling tensors U~,. 

The instantaneous relative displacement of the atoms 
r and s from their mean positions in the direction i is 
given by 

3x ,-Jx  . 

The time and lattice average of the product of the rela- 
tive displacements in the directions i and k is then 
given by 

l t 

= U, ~k+ U, tk-  U ~ -  U ~ .  (3.2) 
We put 

U r + U s - U , s - u r = & s  (3.3) 

and obtain for the average of the sum of the squared 
displacements along the three axes of the Cartesian re- 
ference system 

3 

rZ=( ~ (Ax~,-Ax~)Z)=trace (Ars) • (3.4) 
i = l  

In order to express z z we need the components l~ of the 
unit vector which points in the direction of the bond, d. 
It = dJd. Then we obtain for the average of the atoms r 
and s in the direction of the bond 

3 

z2=( t & ( J x ; - J x ' , )  
/ , k = l  
3 

= us -Urs-u=)  
i , k = l  

=dTArsd/d2. (3.5) 

Thus we obtain for the correction term 

r2-zZ=wZ=trace (A~,)- drA,,d/d z. (3.6) 
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In a non-Cartesian coordinate system with metric ten- 
sor g in crystal space equation (3.6) becomes 

wZ=trace (Arsg)-drgArsgd/d z. (3.7) 

Although the formulation in terms of the coupling 
tensors in a general coordinate system may be of ad- 
vantage in some cases we should point out that, for 
evaluating the bond-length correction, it is sufficient 
to know only the two diagonal components U~J and 
U~Zs z in a Cartesian coordinate system with the z axis in 
the direction of the bond vector. 

4. The known dynamical models 

The equations (3.1), (3.3), and (3.6) show that one only 
needs to know the tensors Ur, Us and Urs, or Ars in 
order to calculate the correction. We now derive Urs 
and Ars for those models which were frequently used in 
the past. 

(a) Uncorrelated motion 
Obviously 

Urs=0 ,  (4.1) 

hence Ars=Ur+Us in agreement with the results ob- 
tained by Busing & Levy (1964). 

(b) Rigid-body motion 
We first express the tensors U, by way of the rigid- 

body vibration tensors T L S, and quote Pawley's (1968) 
formulation 

Ur = T + VrLV,r-  V r S -  (VrS) r . (4.2) 

Vr is the antisymmetric tensor 

(0 2:) 
Vr= Zr 0 - , 

-Y~ Xr 
(4.3) 

where X,, Y~, Z, are the Cartesian coordinates of the 
atom r, referred to an arbitrary origin in the molecular 
system. [The meaning of the components of V, in a 
non-Cartesian system is discussed by Hirshfeld & Ra- 
binovich (1966).] The coupling tensors Urs for the 
rigid-body motion are now obtained by substituting 
the atom s in equation (4.2) for half the positions of the 
atom r. This procedure can be deduced by comparing 
the definitions of U,s given in equation (2.2) and U, 
given in equation (4) of Scheringer (1972). Thus 

Ur, = T + VrLVsr- V r S -  (VsS) r . (4.4) 

Using equations (3.3), (4.2) and (4.4) we obtain 

Ars = (Vr-Vs)L(Vr-  V,) r • (4.5) 

Inserting the result (4.5) in equation (3.6) shows that 
the second term in equation (3.6), z z= drArsd/d z, is al- 

ways zero, since the matrix product (V~-V~)d corre- 
sponds to the vector product dad. The correction only 
depends on the libration tensor L. Equations (3.6) and 
(4.5) are identical with the result obtained by Scho- 
maker & Trueblood [1968, equation (22)]. This can be 
shown by first expressing all vector and tensor com- 
ponents in a Cartesian coordinate system and then 
multiplying out all terms explicitly. We further remark 
that Schomaker & Trueblood's derivation suffers from 
the fact that they were forced to make two special as- 
sumptions (~=0  and i = 0  in their notation) which 
could not be proved to hold generally. 

(c) Riding motion 
If the atom s 'rides' on the atom r all motions of the 

atom r are transferred to the atom s. Hence 

Urs=Ur,  A r s = U s - U , ,  (4.6) 

in agreement with the results obtained by Busing & 
Levy (1964). Johnson (1970) states 'that the riding 
model gives the same corrected distance as the rigid- 
body model if and only if the origin of the atom r, on 
which s rides, is on a true centre of libration with no 
correlated rigid translation'. This can immediately be 
shown to hold from equations (4.2), (4.4), and (4.6)" 
Since the axes of libration pass through the atom r we 
have Vr = 0. Furthermore, S = 0. Then Ur = U,s = T and 
Us = T + VsLV~ r, which proves the statement. 

(d) Lower and upper bounds 
For determining the lower and upper bounds Busing 

& Levy's (1964) equations, cf. also Johnson (1970), are 
more suitable since they contain only scalar quantities, 
whereas in our condition for obtaining the bounds, 

det ( G ) = 0 ,  (4.7) 

a 6 x 6 matrix is involved. G is defined in equation (2.1). 
The two possible cases which satisfy (4.7) are the maxi- 
mum possible in-phase and out-of-phase motions. In 
general, it is not possible to solve equation (4.7) ex- 
plicitly in terms of the tensors U ,  Us, and U,s and this 
prevents its numerical use. Only in the special case of 
U,=Us  we obtain U~s= + Us as solutions of (4.7), as 
can easily be shown by the Laplace expansion of det(G). 

5. Conclusions 

The advantage of the approach described in this paper 
seems to lie in the fact that the bond-length correction 
is derived from the dynamical matrices of the crystal 
which may lead to a better physical understanding of 
the correction. The remaining formal limitations arise 
only from the harmonic approximation used in lattice 
dynamics and from the quadratic approximation used 
in equation (3.1). 

The main practical problem with actual structures is 
the estimation of the values of the coupling tensors 
which in some cases may be deduced from dynamical 
models. However, often one is not sure if the models 



C. S C H E R I N G E R  619 

conceived can largely, or only roughly, be applied to 
the actual structure. This holds, of course, for any 
other approach to the question of bond-length correc- 
tion. 

In the succeeding paper we shall develop dynamical 
models for diatomic and triatomic molecules. 
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The bond-length correction which is needed to correct for the effects of thermal motion is derived for 
diatomic and triatomic molecules. We treat the molecules as rigid-body oscillators and assume that the 
correlation tensor S is symmetric when the origin of the librations is at the centre of gravity. For di- 
atomic molecules consisting of atoms of different masses and for linear triatomic molecules a simple 
solution is obtained. For diatomic molecules consisting of equal atoms and for angular triatomic mol- 
ecules one can determine the correction only by introducing an unknown lattice-dynamical parameter. 
The value of this parameter can be assessed to a certain extent and can be determined from the vibra- 
tion tensors of the atoms of asymmetric diatomic and linear triatomic molecules. Thus one obtains an 
experimental distribution of the lattice-dynamical parameter which is also likely to hold for symmetric 
diatomic and angular triatomic molecules. The corrections are calculated for 11 water molecules for 
which very accurate structural data are available. 

1. Introduction 

The thermal bond-length correction for diatomic and 
triatomic molecules can, in principle, be determined 
from the model of rigid-body motion (to a very good 
approximation). If one atom in the molecule is much 
heavier than the others, the riding model (of. Busing & 
Levy, 1964) also provides an essentially correct value 
of the correction. However, for many diatomic and 
triatomic molecules the assumptions made in the riding 
model do not hold. Even for the H20 molecule the 
riding model does not seem to be appropriate and for 
the D20 molecule it is certainly inappropriate. 

If one wants to determine the correction by applying 
the rigid-body model the question arises to what extent 
the validity of this model is restricted by the internal 
modes of the molecule. For diatomic molecules there is 
only one internal mode in the direction of the bond. 
Since this mode does not enter into the calculation of 
the correction, the rigid-body model holds exactly for 
evaluating the correction for diatomic molecules. With 
triatomic molecules, however, the components of the 
atomic vibration tensors U, which are determined ex- 
perimentally, contain contributions of the internal 

modes. For light atoms these contributions attain their 
maximum. In a preceding paper (Scheringer, 1972a) we 
showed that, even for hydrogen atoms, they do not 
amount to more than about 10% of the total mean- 
square amplitudes. However, if one evaluates the com- 
ponents of the libration tensor L of the molecule from 
the experimentally determined components U ~k the 
actual error made is even smaller. The reason is that  
internal and external modes often have nearly the same 
mean-square amplitudes so that the libration tensor 
also contains the internal modes to a large extent. We 
shall discuss these relations in detail for the water mol- 
ecule. 

If the rigid-body model is applied to diatomic and 
triatomic molecules further investigation will then 
show that it is expedient to divide the molecules into 
two classes. For the molecules of the first class the 
correction can be determined directly from the vibra- 
tion tensors U of the atoms. It is to this class that  the 
diatomic molecules with unequal masses and the linear 
triatomic molecules belong. For the molecules of the 
second class the thermal rigid-body parameters cannot 
be fully determined from X-ray or]and neutron data, 
i.e. the components U ik of the atoms are not sufficient 


